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We study a model fluid with classical translational degrees of freedom and internal quantum states

in two spatial dimensions.

The path-integral Monte Carlo and the Gibbs-ensemble Monte Carlo

techniques are combined to investigate the liquid-gas coexistence region in this mixed quantum-
classical system. A comparison with the phase diagram obtained in the canonical ensemble is also

presented.
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Monte Carlo (MC) simulations in the Gibbs ensem-
ble [1,2] have now been successfully used for several years
to study first-order phase transitions in fluids; for recent
reviews see [3]. For temperatures far below the criti-
cal point, satisfactory results for the phase coexistence
densities can be obtained. Near the critical point, how-
ever, finite size effects become significant, and finite size
scaling [4] has proven to be important in the study of
off-lattice systems [5]. Recently, phase transitions in two-
dimensional systems [6] have received much attention in
experimental studies of phase transitions in adsorbed lay-
ers [7] as well as in MC studies [8], in particular phase
transitions at low temperatures where quantum effects
become important. In this regime it is often a satisfac-
tory approximation to treat only a subset of all degrees
of freedom on a quantum-mechanical basis. Thus generic
Hamiltonians for such problems often contain classical
and quantum degrees of freedom.

Until now, simulations in the Gibbs-ensemble have
been applied to purely classical systems. In this paper we
present a Gibbs-ensemble Monte Carlo (GEMC) study
of phase coexistence in a two-dimensional fluid with in-
ternal quantum states using path-integral Monte Carlo
(PIMC) techniques [9]; for a review of PIMC see [10].
In the present paper we will focus on the liquid-gas enve-
lope, the main domain of applicability of the GEMC tech-
nique. In our previous canonical PIMC simulations [11]
this coexistence region as well as the solid coexistence
density were mapped by exploiting the off-lattice gener-
alization [5] of the block analysis method [4]. The two-
dimensional fluid to be defined below serves as a generic
model for a certain class of physisorbed molecules. It
exhibits astonishingly rich phase behavior including var-
ious liquid-gas-solid coexistences, a critical line ending in
a tricritical point, as well as two solid phases with two
associated triple points. Many qualitative features ob-
served in real systems are obtained, although we had not
intended to model any specific adsorbate, see [12].

In particular, we study the liquid-gas transition of a
model fluid with internal quantum states [11,13,14]. Its
mixed quantum-classical Hamiltonian is given by
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where M is the particle mass, p; is the momentum of par-
ticle ¢, r;; is the distance between particles ¢ and j, and
o® and o* are the usual Pauli spin half-matrices. The po-
tential energy consists of a one-particle (two-level) part
with tunnel splitting wo and two pair interaction terms
U(r) and J(r). We chose U(r) to be a hard disk po-
tential for particles with diameter d and J(r) to be a
square well potential with J(r) = J ford < r < 1.5d and
zero elsewhere. The total number of particles IV and the
total volume V is fixed; the average dimensionless den-
sity is p* = pd?. The particles are constrained to move
in two spatial dimensions, which mimics an adsorbate
in the strong-adsorption—small-corrugation limit. In the
adiabatic approximation we assume a separation of the
translational and internal degrees of freedom and treat
the translations classically, which is justified for large
particle masses M.

Application of the Trotter formula [10] results in the
following expression for the system’s partition function
Z(B,N,V) in the Gibbs ensemble:

Z(B,N,V) = lim Zp(B,N,V)

= lim
P—oo

N \%
Y. [ @ize(s. M)
=00

XZP(ﬂ,Nz,Vz) (2)

at temperature 7* = (8J)~! with the discretized parti-
tion function in the GEMC box k for fixed Trotter di-
mension P being
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Here Nj denotes the number of particles in the GEMC
box k with volume Vi, £k € {1,2}, and the NVT-
GEMC constraints [3] Ny + N, = N and V; +
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Ap and Kp are given by Ap = [% sinh(Bwo/P )] and FIG. 1. Snapshot of configurations in the two simulation

Kp = 553 In[coth(Bwo/2P)] where A denotes the thermal
de Broglie wavelength and the quantum chains have to
satisfy periodic boundary conditions with respect to P.

We study several thermal properties of the model
defined in Eq. (1) by averaging observables using
the Boltzmann factor resulting from the mapping
of the original quantum problem to the correspond-
ing equivalent classical system. In particular we
study in both simulation boxes k the properties of
the magnetization m; as averages along the quantum

<Zﬁ__"1 Zle Si,p/NkP>k, the (dimen-
sionless) interaction energy FE} per particle, Ef :=
B <W:&k({5}, {r})/Nk> , the dimensionless internal en-
ergy Ef per particle, "

Ei: = —(Bwo/2) [tanh”l(ﬁwo/P)
+ {PKp sinh(Bwe/P)} "
< (Wa sk /M), | (@

and the particle density p;. Here ( )i denotes the stan-
dard average in box k of the Gibbs ensemble [1] for the
mixed quantum-classical Hamiltonian. We shall hence-
forth omit the box index of the thermal averages and
refer directly to the boxes.
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boxes at T = 0.35 and p* = 0.45. The instantaneous mag-
netic moment of the particles u; = Z:::l Sip/P is repre-

sented by solid (u; > 0) and empty (u: < 0) circles.

In order to study the systematic ensemble dependen-
cies of the liquid-gas coexistence densities, which recently
received much attention in the context of GEMC simu-
lations [17,18], we chose the same parameters as in [11].
Thus the Gibbs ensemble simulations [15,16] were per-
formed for wo/J = 4 (where J = 1) with N = 200 parti-
cles and a Trotter dimension chosen to satisfy P/8J =~ 40
for each temperature.

In addition to many other phase transitions [11], at low
temperatures the system undergoes a first-order transi-
tion with coexistence between a paramagnetic gas and a
ferromagnetic liquid. This liquid-gas transition is the fo-
cus of the present work in the Gibbs ensemble. In Fig. 1
we show a typical snapshot of the configurations in the
two boxes at an average density of g* = 0.45 and tem-
perature T* = 0.35. The system is deep in the two-phase
coexistence regime: one box contains a paramagnetic gas
and the other contains simultaneously a dense ferromag-
netic liquid. In Fig. 2 we present the results for densities,
magnetizations, and internal and interaction energies in
the two boxes as a function of MC steps at T* = 0.45 and

p* = 0.45. For these parameters we obtain a clear phase
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FIG. 2. (a) Time evolution of density, (b) interaction energy E?, (c) internal energy E*, and (d) magnetization at temperature
T* = 0.45 and density p* = 0.45. Squares indicate the results in box 1, circles in box 2.



5164

separation into a phase at high density and high mag-
netization in box 1 and a phase at low density and low
magnetization in box 2. In the gas box 2 the particles are
mainly in their 0® ground states, the internal energy E*
is small, and the magnetic interaction energy EZ* is nearly
zero. In box 1, however, the particles are hybridized and
occupy to a large extent o* eigenstates, resulting in a
large value for their individual magnetic moments and
thus for the total magnetization m in that liquid phase.
The higher density leads to small interparticle distances
and thus to a low interaction energy and an internal en-
ergy that is much larger than that in box 2. Note that the
Gibbs-ensemble technique [3] gives immediate and simple
access to such thermal properties of the coexisting phases
(as long as the boxes do not exchange identity, see below),
whereas the block analysis technique [5,11,19] is tailored
to yield the distribution function of the order parameter,
i.e., the density in this case. Histograms for magneti-
zation and density are presented in Figs. 3(a) and 3(b),
respectively. At low temperatures the two phases are
quite stable in the two boxes, where the average magne-
tization in box 1 decreases with increasing temperature
as well as with the density difference between the two
boxes. At temperatures close to T = (.55 the system
is near its liquid-gas critical point, which is a tricriti-
cal point due to the merging of the magnetic critical
line into the liquid-gas coexistence curve.  In this case
the time evolutions of observables are not as stable as in
Fig. 2. Owing to the increasing correlation length which
exceeds that of the simulation boxes, the identities of the
two boxes change often, resulting in overlaps of the den-
sity and magnetization histograms. In the case of clearly
separated peaks in the density histograms [see Fig. 3(b)],
the coexistence densities are easily obtained by comput-
ing the first moments of these distributions. In the case
of histograms with a double peak structure, the coexis-
tence densities are obtained by fitting “half” Gaussians to
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FIG. 3. Magnetization histogram (a) and density his-
togram (b) at the density of 7* = 0.45 and the temperature
T* = 0.35. The dashed line refers to box 1 and the solid line
to box 2.
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the low-density “shoulder” as well as to the high-density
shoulder in the density histograms and taking the centers
of the Gaussians as estimates for the coexistence densi-
ties. By evaluating the coexistence densities for several
temperatures we finally obtain the GEMC coexistence
densities in our system, see Fig. 4. The resulting GEMC
phase diagram is represented in Fig. 4 by circles, together
with the results of Ref. [11] obtained in the canonical en-
semble. Using the standard technique [1] of locating the
intersection point of the (i) “rectilinear diameter law”
line, which yields an extrapolation of the line of equal
density difference to the two phases as a function of tem-
perature [(pg + p1)/2 = a + bT], and of (ii) the extrapo-
lation line for the order parameter as a function of tem-
perature near the tricritical point (p; — py = B(T.— TP+
using a value of 1/4 for the “subsidiary” tricritical expo-
nent [20] B,), we obtain the estimates T} = 0.55 + 0.02
for the tricritical temperature and p} = 0.465 & 0.02 for
the tricritical density. As mentioned in [11] the mean
field theory predicts too large a coexistence region which
results in an overestimation of the liquid-gas tricritical
temperature by 100%. The choice of the numerical value
for 3, underlying the fitting procedure of the order pa-
rameter deserves some remarks. As noted by Mon and
Binder [18], when the correlation length £ exceeds the
linear system size, VV < &, close to the (tri)critical
point, one would expect the mean field exponent SMF
to be applicable, which in the case of a tricritical point
in a two-dimensional system is SMF = 1 [21]. In the
neighborhood of the tricritical point in a regime where
V'V > &, however, one should expect the true tricriti-
cal exponent for the infinite size system (3, to be valid.
Besides conjectures [21] in favor of 8, = 1/4, MC renor-
malization group computations [22] yield an estimate for
this value of 3, = 0.234. In the present study we chose
the value 3, = 0.25 for all temperatures. This procedure
of using for all temperatures the same numerical value
for the exponent was recently suggested [23] in the con-
text of liquid-gas phase coexistence of a Lennard-Jones
fluid, where a comparative study showed that with this
procedure critical parameters can be obtained with an

1.0 O
o ONVT
0.8 a @ Gibbs
T o6
i
al

0.4 ' m] 4

|_nl

&) 5
0.2

00 02 04 06 08 10
P

FIG. 4. Phase diagram for wo/J = 4, J = 1, N = 200,
and P/BJ = 40. Circles represent results for the coexis-
tence densities from this work, squares refer to the results
of [11] (the squares for temperatures above the tricritical
point mark the continuous ferroparamagnetic transition in
the fluid phase). The line is a fit of the data to the scal-
ing behavior [(pi — pg) = B(T. — T)P* using B. = 1/4] and
the dashed line is the fit through the “rectilinear diameter
data” [(pg + p1)/2 = a + bT.
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accuracy of 1% if data points in the immediate neigh-
borhood of the critical point, where mean-field behav-
ior occurs, are discarded. Deviations of the resulting fit
curve for the order parameter from the data in Fig. 4
may be caused by this too small an exponent very close
to the tricritical point. Finally we find only a weak en-
semble dependency of the results within their statistical
reliability: the GEMC values we obtained for 7™ and
p* are in close agreement with the values of a previous
canonical study [11] in conjunction with the block anal-
ysis of the order parameter. Thus using similar system
sizes and computational resources, these two methodolo-
gies are competitive with respect to their capacity to effi-
ciently obtain rough estimates for liquid-gas coexistence
data and critical points in off-lattice systems.

In this paper we presented a combination of path-
integral Monte Carlo and Gibbs-ensemble Monte Carlo
simulation techniques for the investigation of phase tran-
sitions in mixed quantum-classical fluids. As a generic
Hamiltonian, our model fluid had classical translational
degrees of freedom in two spatial dimensions and inter-
nal quantum states. At low temperatures this system
has a first-order phase transition with the coexistence of

a paramagnetic gas and a ferromagnetic liquid. Owing
to the advantage of having immediate access to both co-
existing phases without additional effort, one can easily
evaluate thermal properties such as the internal and in-
teraction energies or the magnetization without the dis-
turbing interface present in canonical ensemble simula-
tions. The coexistence densities at low temperatures and
estimates for the tricritical point are obtained in good
agreement with the results of a study using the canonical
ensemble. We think that the combination of techniques
presented here, PIMC and GEMC, may have a broad
range of applications in future investigations of problems
involving internal quantum states coupled with classical
translations.
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